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This paper analyzes several aspects regarding the improvement of software performance for 
applications written in the Compute Unified Device Architecture (CUDA). We address an 
issue of great importance when programming a CUDA application: the Graphics Processing 
Unit’s (GPU’s) memory management through transpose kernels. We also benchmark and 
evaluate the performance for progressively optimizing a transposing matrix application in 
CUDA. One particular interest was to research how well the optimization techniques, applied 
to software application written in CUDA, scale to the latest generation of general-purpose 
graphic processors units (GPGPU), like the Fermi architecture implemented in the GTX480 
and the previous architecture implemented in GTX280. Lately, there has been a lot of interest 
in the literature for this type of optimization analysis, but none of the works so far (to our best 
knowledge) tried to validate if the optimizations can apply to a GPU from the latest Fermi 
architecture and how well does the Fermi architecture scale to these software performance 
improving techniques. 
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Introduction 
Many software developers have focused 

their attention lately on General Purpose 
Computation Graphics Processing Units 
(GPGPU) as the latest generations of GPU 
(Graphics Processing Units) architectures are 
much easier to program than traditional 
GPUs and offer a significant increase in both 
memory bandwidth and computational 
power. A GPGPU has a processing power far 
beyond than that of a CPU (Central 
Processing Unit), which is particularly useful 
in many scientific fields (data extraction, 
financial data prediction, telecommunication 
control, neuroscience, medical data analysis). 
The necessary time for data extraction is 
considerably reduced as graphics processing 
units combine hundreds of simplified parallel 
processing cores, which can be very useful 
when performing operations on massive data 
workloads.  
Numerous scientific fields like image 
processing, geometric processing and 
database can benefit from this high 
computational power that overcomes the 
most powerful CPUs. The performance per 
watt consumed represents another essential 

aspect when comparing a GPGPU to a 
classical central processing unit. Taking into 
account the high performance, low cost and 
the increasing number of features offered, 
general-purpose computation graphics 
processing units prove to be powerful 
instruments capable of solving an 
increasingly wide range of applications. 
The PeakStream Application Platform [1] 
from PeakStream executed successfully 
Monte Carlo simulations for pricing financial 
instruments. When compared to dual 3.6GHz 
Xeon processors, the GPU implementation 
provided a 16X speedup. Scientists from the 
University of North Carolina at Chapel Hill 
[2] have developed algorithms for 
performing fast computation of several 
common database operations on GPU’s 
(conjunctive selections, aggregations, and 
semi-linear query). For certain query types, 
the performance gain was huge. 
In this paper, the research is focused on 
features and generalized optimization 
methods, on establishing principles and 
strategies for improving software 
performance when using the Compute 
Unified Device Architecture implemented in 

1 



Informatica Economică vol. 14, no. 4/2010  31 

 

the latest generation of graphics processing 
units (GPU) (like the Fermi architecture). In 
order to achieve a significant degree of 
performance and benefit from the Fermi’s 
architecture full potential, massive 
multithreading must be employed to 
optimally manage the large number of cores 
and global memory latency. 
 
2 Related Work 
In this section, we briefly review previous 
work on similar software performance 
optimizing techniques that are of particular 
interest for our research.  
In [3], authors discuss the GeForce 8800 
GTX processor's architecture, features, and 
generalized optimization strategies. On this 
platform, the optimization could be achieved 
by using massive multithreading, taking into 
account at every step the right balance 
between each thread's resource usage and the 
number of simultaneously active threads. The 
resources to manage include the number of 
registers and the amount of on-chip memory 
used per thread, number of threads per 
multiprocessor and global memory 
bandwidth. An increase in performance is 
obtained by reordering accesses to off-chip 
memory in order to combine requests to the 
same or contiguous memory locations and it 
is applied the classical optimizations to 
reduce the number of executed operations. 
All these strategies were applied across a 
variety of applications and domains and 
achieve between a 10.5X to 457X speedup in 
kernel. The above-mentioned GPU is capable 
of impressive performance on a set of 
disparate non-graphics applications. The 
paper presents general principles for 
optimizing applications for this type of 
architecture, namely having efficient code, 
utilizing many threads to hide latency and 
using local memories to alleviate pressure on 
global memory bandwidth. 
In [4] it is described a high-performance 
parallel radix sort and merge sort routines for 
many core GPUs, taking advantage of the 
full programmability offered by CUDA. In 
order to optimize software performance, 
authors have carefully designed algorithms 

that expose substantial fine-grained 
parallelism and decompose the computation 
into independent tasks that perform minimal 
global communication. The optimization 
techniques made use of the high-speed on-
chip shared memory provided by NVIDIA’s 
GPU architecture and efficient data-parallel 
primitives, particularly parallel scan. They 
measured the performance on a range of 
NVIDIA GeForce GPUs: the GTX 280, 9800 
GTX, 8800 Ultra, 8800 GT and 8600 GTS. 
Measurements demonstrate that 
progressively more parallel devices achieve 
progressively faster running times. 
In [5] we are presented some techiques of 
optimization for algorithms used in temporal 
data mining based on the MapReduce 
programming model. The benchmark has 
been run on systems using three NVIDIA 
graphic cards: GeForce 8800, GeForce 9800 
GX2 and GeForce GTX 280. In the first 
technique, the data is stored in texture 
memory and a strict thread-level parallelism 
is employed to assign one thread to search 
for a frequent episode. The second technique 
uses shared memory to buffer the data prior 
to searching for a unique episode. 
Benchmark results highlight the fact that a 
high-performance implementation on the 
GPGPU should factor in the problem size, 
the type of GPU, the type of algorithm and 
the data-access method when determining the 
type and level of parallelism. To guide the 
GPGPU programmer towards optimal 
performance within such a broad design 
space, authors provide some general 
performance characterizations of the data-
mining application. 
Recently, N. Nakasato [6] has presented 
benchmark results of optimized dense matrix 
multiplication kernels for a Cypress GPU 
(which belongs to AMD's Evergreen family 
of products). In this paper there are proposed 
general matrix multiply kernels for single, 
double and double-double precision. The 
proposed kernels show 73% and 87% of the 
theoretical performance of the GPU, 
respectively. The benchmark leads to some 
interesting results, including the conclusion 
that texture cache is very effective on the 
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Cypress architecture. 
 
3 The Compute Unified Device 
Architecture (CUDA) 
Graphics Processing Units have been used 
for a long time solely to accelerate graphics 
rendering on computers. In order to satisfy 
the increasing need for improved  
three-dimensional rendering at a high 
resolution and a large number of frames per 
second, the GPU has evolved from a one-

purpose specialized architecture to multiple 
purposes complex architectures, able to do 
much more than just provide video rendering. 
The acceleration of a broad class of 
applications became possible once with the 
introduction of the NVIDIA Compute 
Unified Device Architecture. The 
architecture and the main characteristics of 
the NVIDIA GPUs are summarized in Figure 
1. 

 

 
Fig. 1. NVIDIA Compute Unified Device Architecture (CUDA)[7]. 

 
CUDA is a software and hardware 
architecture that enables the NVIDIA 
graphics processor to execute programs 
written in C, C++, FORTRAN, OpenCL, 
Direct Compute and other languages. A 
CUDA program invokes more parallel 
program kernels. The kernel processes in 
parallel each set of parallel threads. The 
programmer or compiler manages these 
threads by grouping them into thread blocks 
(consisting of more threads) and grids of 
thread blocks (consisting of more thread 
blocks). 
The GPU processor instantiates a kernel 
program on a grid containing parallel thread 
blocks. Each thread from the block executes 
an instance of the kernel and has an unique 
ID associated to registers, to thread’s private 
memory within the thread block [7].  
The Compute Unified Device Architecture 
hierarchy of threads is mapped to the 
hierarchy of the graphics processing units’ 
hardware processor; a GPU executes one or 

more kernel grids; a streaming 
multiprocessor (SM) executes one or more 
thread blocks; the CUDA cores contained in 
the streaming multiprocessor SM run the 
threads within blocks. A streaming 
multiprocessor SM can process up to 32 
groups of threads called warps. Regarding 
memory hierarchy, each multiprocessor 
contains a set of 32-bit registry with a zone 
of shared memory, which is easily accessible 
for each core of the multiprocessor but 
hidden from other multi-processors. 
Depending on the generation of a GPU, the 
number of registry and the size of shared 
memory vary. Besides shared memory, a 
multiprocessor contains two read - only 
memory caches, one for texture and another 
one for constants. 
In order to improve software performance 
when programming in CUDA, developers 
have to optimize the number of concomitant 
active threads and balance each thread’s 
resources: number of registers and threads 
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per multiprocessor, global memory 
bandwidth and the amount of on-chip 
memory assigned per thread. Performance 
increases have been obtained by reordering 
accesses to off-chip memory in order to 
manage requests referring to the same 
memory locations (or contiguous memory 
locations). By applying these techniques, 
many applications improved their execution 
time up to 457X in kernel codes and 431X at 
a general level [3]. 
In the NVIDIA CUDA programming model 
[7] a system is comprised of a traditional 
CPU (representing the host) and one or more 
massively data-parallel coprocessors 
(representing the devices). The CUDA 
runtime has library functions for managing 
both the device memory and transfers from 
the host to the compute devices.  
All concurrent threads are based on the same 
code even if they may follow different paths 
of execution because each CUDA device 
processor supports the Single-Program 
Multiple Data (SPMD) model [8] and each 
thread resides in the same global address 
space. Data parallel functions, called kernels 
and data structures, corresponding to the 
compute devices, comply with standard 
ANSI C extended with keywords. A kernel is 
usually invoked on thousands of threads and 
describes the work of a single one. Inside 
thread blocks, through built-in primitives, 
threads synchronize their actions and share 
their data. The CUDA programming model 
enables a program’s components, which are 
suited for data parallelism, to be separated 
and executed on a specialized massive data 

parallelism coprocessor. A detailed overview 
on the CUDA programming model is 
depicted in [7]. 
The G80 on the GeForce 8800 is NVIDIA’s 
first GPU that implements CUDA and has 16 
streaming multiprocessors, each of them 
having 16 KB shared memory and eight 
streaming processors (SPs) resulting in a 
total of 128 SPs [7]. Later on, the GT200 
architecture implemented in the GeForce 
GTX200 series succeeded the G80. The 
amount of streaming multiprocessors is 30 
resulting in a total of 240 SPs. The 
architecture also offered double precision 
floating-point capability. The newest 
NVIDIA’s architecture is called Fermi and 
became commercially available on March 26, 
2010. This architecture is implemented in the 
GeForce GTX400 series and it features 16 
SMs, each of them having 32 SPs (in the 
Fermi architecture the streaming processors 
are called CUDA cores) and 64 KB shared 
memory which is configurable as larger 
shared memory or larger L1 cache (48/16 KB 
or 16/48 KB). The total amount of SPs is 512 
and the whole GPU shares a L2 cache of 768 
KB. Fermi offers eight times faster double 
precision performance, IEEE 754-2008 FP 
precision and error correcting code (ECC) 
memory, especially required for consistency 
requirements of scientific computing [7]. A 
comparison between the three architectures is 
depicted in Table 1. This architecture offers a 
high degree of flexibility when it comes 
about allocating local resources like registers 
or local memory in threads. 

 
Table 1. Comparison of the three major CUDA GPU architecture specifications  

(Note that the numbers of streaming processors are maximum values). 
Architecture’s Codename G80 GT200 Fermi

Release Year 2006 2008 2010 
Fabrication Process 90 nm 65 nm 40 nm 

Number of Transistors 681 million 1.4 billion 3.0 billion 
Streaming Multiprocessors (SM) 16 30 16 
Streaming Processors (per SM) 8 8 32 

Streaming Processors (total) 128 240 512 
Single Precision FP Capability 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock 
Double Precision FP Capability None 30 FMA ops/clock 256 FMA ops/clock 

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or 16 KB 
L1 Cache (per SM) None None Configurable 16 KB or 48 KB 

L2 Cache None None 768 KB 
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The programmer divides local resources 
among threads and every CUDA core can 
process a variable number of threads. 
Although this flexibility offers a high degree 
of control over an application performance, it 
also has a great impact on optimizing the 
performance of applications. Another 
important aspect is related to how the 
GeForce GTX480 can execute applications 
and what are the elements that improve or 
limit its performance. Numerous software 
applications were ported and evaluated on 
the CUDA platform as a result of its huge 
data processing power [9].  
According to a study from Stanford 
University [10], when one chooses to execute 
code on the CUDA platform, he must follow 
some major guidelines in order to improve 
the software performance:  
 understand how software maps to 

architecture,  
 use heterogeneous CPU+GPU computing,  
 use massive amounts of parallelism,  
 understand SIMT (Single Instruction 

Multiple Thread) instruction execution,  
 enable global memory coalescing,  
 understand cache behaviour,  
 use shared memory,  
 optimize memory copies,  
 understand PTX (a low-level parallel 

thread execution virtual machine) 
instructions. 

In order to improve the software performance 
the following technical issues must be taken 
into consideration:  
 To assure a reduced bandwidth usage and 

to minimize the redundant execution, a 
programmer must optimize the use of the 
on-chip memory. This memory is called 
shared memory, is software managed and 
along with a register file it represents the 
working memory within a group of cores. 
The shared memory has low latency and is 
partitioned among all the thread blocks 
that belong to the same streaming 
multiprocessor during the runtime. The 
inter-thread data can be reused because all 
data in the shared memory is shared 
among threads from the same thread 

block. Even if there is a small increase in 
the registers or shared memory usage per 
thread, the number of simultaneous 
executed threads diminishes greatly.  

 Using synchronization each thread can 
communicate only with other threads 
within the same thread block and there is 
no communication within threads from 
other blocks. Therefore, hardware 
resources do not have to be virtualized 
and so the hardware becomes highly 
scalable. The same program written in 
CUDA can be executed successfully on 
different generations of GPUs (for 
example one can use a GTX480 as well as 
a GTX280) but a single kernel call has a 
limited parallelism that can be applied.   

 Every GPU thread has its own private per 
thread memory, private registers, program 
counter and thread execution state. Each 
thread can execute an independent code 
path. The GPU processor executes and 
manages at hardware level hundreds of 
concurrent threads avoiding scheduling 
overhead and hiding memory latency. The 
Fermi architecture offers 512 execution 
cores; a GTX480 has 480 execution cores 
available for use. Hundreds of threads are 
needed for all these cores to be completely 
occupied. The high latency of global 
memory is also an important technical 
issue that must be taken into consideration 
when a programmer defines the threads in 
order to improve the software 
performance in CUDA. While CPU 
designs use large caches to hide memory 
latencies, CUDA generates and uses 
thousands of active threads. In contrast to 
traditional multicore systems, 
programmers may have to define threads 
at a finer granularity in order to assure that 
there is a sufficient number of threads and 
see that there is a high compute-to-
memory-access ratio in order to avoid 
saturation of memory channels. 
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4 Optimizing Performance for Programs 
Written in the CUDA Programming 
Model 
When algorithms are developed in the 
CUDA programming model, the basic 
concern of developers is to divide the work 
required in fragments that can be processed 
by a x number of thread blocks, each 
containing n threads. For optimum 
performance, it is recommended that the 
number of thread blocks match the number of 
processors, although the threads within a 
block will be executed by more cores within 
a streaming multiprocessor. The most 
important factor in achieving performance 
consists in repartitioning the tasks to be 
performed between the x thread blocks.  
A single thread block can be considered as 
equivalent to a PRAM model (parallel 
random-access-machine) which allows 
processors to behave arbitrarily 
asynchronous CRCW (concurrent-read, 
concurrent-write) [11].  
Thus, PRAM algorithms are most efficient at 
block level [4] and they have to be 
decomposed into separate kernels because of 
the need for global synchronization of data 
flows, synchronization that can be achieved 
only by successive calls of the kernel. 
When optimizing an application for the 
Fermi architecture we have to consider the 
floating point throughput of an application 
and the fact that the Fermi architecture now 
supports by default subnormal numbers at the 
hardware level and also all four IEEE 754-
2008 rounding modes (nearest, zero, positive 
infinity, and negative infinity) [7]. 

Subnormal numbers consist of small numbers 
between zero and the smallest normalized 
number of a given floating point number 
system. The GPUs generations prior to Fermi 
incurred a loss of accuracy by flushing 
subnormal operands and results to zero. 
Subnormal numbers are handled at hardware 
level, allowing values to gradually underflow 
to zero without a performance penalty unlike 
the CPUs that perform subnormal 
calculations in exception-handling software, 
which consumes thousands of cycles. 
In computer graphics, linear algebra and 
scientific application one often needs to 
multiply two numbers and add the product to 
a third number (E.g. D = A × B + C). In prior 
generations of GPUs the multiply-add 
(MAD) instruction was used and both 
operations were performed in a single clock 
by performing a multiplication with 
truncation, followed by an addition with 
round-to-nearest even. Nvidia implemented 
the new fused multiply-add (FMA) 
instruction in the Fermi architecture for both 
32-bit single-precision and 64-bit double-
precision floating-point numbers (The 
GT200 supports FMA only in double 
precision). The fused multiply-add 
instruction brings several improvements 
when compared to multiply-add by 
withholding full precision in the intermediate 
stage (Figure 2). A significant number of 
algorithms (used in iterative mathematical 
calculations, rendering fine intersecting 
geometry) benefit from the increased 
precision.  
 

 

 
Fig. 2. Differences between the fused multiply-add and the new fused multiply-add 

 
The Fermi architecture offers a Single 
Precision Floating Point Capability of 512 
FMA ops /clock and a Double Precision 

Floating Point Capability of 256 FMA ops 
/clock. In order for this performance to be 
reached, the CUDA streaming processors 
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must be fully loaded and for this to happen 
an application must have many threads with 
few synchronizations without consuming the 
global memory bandwidth. The kernel speeds 
up if the number of instructions that do not 
contribute to data computation is reduced 
[12]. 
In order for an application to reach maximum 
performance, the developers must properly 
manage global memory latency by creating 
enough threads to fully load the streaming 
processors while other threads are pending 
on global memory accesses. The threads in 
the CUDA programming model must have a 
finer granularity than those used for 
traditional multicore execution. The number 
of global accesses and long-latency 
operations in an application determines the 
necessary number of threads. The available 
shared memory and registers’ size may 
restrict the number of active threads and 
generate memory latency. 
According to the official documentation 
"Official CUDA Programming Guide" [7] 
the limitation of memory can be overcome in 
two ways. A possible option is the memory 
paging technique that successively moves 
portions of memory and then processes them. 
The developer can use also the CUDA direct 
access memory option, “zero-copy” but the 
bandwidth available for this technique is very 
low and the memory should be declared as 
“pinned” thus allowing the memory pages to 
be maintained in real memory all the time. 
This method is less effective than the paging 
one as both the GPU and the operating 
system have limits concerning the pinned 
memory that is under 4 GB. 
The Fermi architecture overcomes all the 
above-mentioned limitations and significant 
efforts are made to develop a CUDA 
programming environment to provide the 
necessary facilities for the typical 
programmer. A Fermi GPU can execute and 
run genuine C++ code as a result of a unified 
memory hierarchy address space. A 
programmer can access dynamic arrays in 
registry memory resulting in enhancements 
that allow improved execution times for 
complex algorithms. 

Although the GPU has six 64-bit memory 
partitions, for a 384-bit memory interface, 
supporting up to a total of 6 GB of GDDR5 
DRAM, the memory is a significant 
limitation of the hardware and is still 
insufficient considering that in practice many 
databases’ sizes are of the order of terabytes 
or even petabytes.  
The global memory bandwidth influences 
and limits the throughput of the system. In 
this case, the developers cannot improve 
performance by increasing the number of 
threads. The number of simultaneously 
executed threads is limited by the necessity 
of reusing data and therefore, it imposes the 
use of additional registers and shared 
memory. The usage of these resources is very 
difficult to balance, often is non-intuitive and 
some applications will run within the limits 
of resources which are different from those 
specified by this architecture. 
 
5 Experimental Results 
In this section, we analyze the main aspects 
of CUDA application performance and GPU 
memory management through a sequence of 
progressively optimized kernels as applied to 
a matrix transpose. In the beginning there are 
depicted some matrix transpose 
characteristics, then a few issues regarding 
the code-behind, performance measurements 
and a sequence of copy and transpose kernels 
that progressively address various 
performance bottlenecks. We address three 
aspects concerning memory usage: 
coalescing data transfers to and from global 
memory, shared memory bank conflicts, 
partition camping. Shared memory bank 
conflicts are related to on-chip shared 
memory (presented in Section 2 of this 
paper) while coalescing and partition 
camping relates with data transfers between 
global device and on-chip memories. The 
analyzed issues address basic CUDA 
programming concepts: kernels, threads, 
blocks of threads, different memory spaces 
accessible by CUDA threads. A detailed 
overview for these concepts is presented in 
[7].  
For the transpose optimization we choose a 
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matrix of floats so that the input and output 
matrices address different memory locations 
as recommended by Greg Ruetsch and 
Paulius Micikevicius in [13]. The 
Whitepaper recommends using square 
matrices having a multiple of 32 dimension. 
If one decides to change these dimensions 
and choose some arbitrary size matrices, he 
must make some slight modifications in the 
source code.      
The main analyzed tasks consist in launching 
and timing of several kernels, data allocation 
and transfer between the host and the device, 
validating of the results and freeing host and 
device memory. For benchmarking purposes, 
we also run kernels that execute matrix 
copies, not only matrix transposes. The 
effective bandwidth is calculated in GB/s for 
the matrix copy and the transposed one using 
a NVIDIA GTX480 and a GTX280. The 
calculated bandwidth is chosen as twice the 
size of the matrix (corresponding to the 
operations of reading and writing the matrix) 
divided by the time of execution as proposed 
in [13]. In the benchmarking, the following 
configuration has been used: Intel Core2 
Quad Q9550 at 2.8 GHz with 4 GB (2x2GB) 
of 1333 MHz DDR3 SDRAM. Programming 
and access to the GPUs used the CUDA 
toolkit 3.2. RC with NVIDIA driver version 
260.93. In addition, all processes related to 
graphical user interface have been disabled to 
reduce the external traffic to the GPU. 
At the top of the code in the 
“TranspunereMatrice.cu” file we define the 
variable “NUMAR_REPETITII” that 
specifies the number of loops that normalize 
the effective bandwidth. The looping is 
executed a “NUMAR_REPETITII” times 
over the code and the measurement is 
calculated when looping takes place over 
kernel and within the kernel as shown below: 
 
// masuram lansarea la nivelul kernel 
cutilSafeCall( cudaEventRecord(inceput, 
0) ); 
for (int i=0; i < NUMAR_REPETITII; i++) 
{ 
      kernel<<<grid, 
threads>>>(device_odata, device_idata, 
dimensiune_x, dimensiune_y, 1); 
} 
cutilSafeCall( cudaEventRecord(sfarsit, 

0) ); 
cutilSafeCall( 
cudaEventSynchronize(sfarsit) ); 
    float TimpKernelExtern; 
cutilSafeCall( 
cudaEventElapsedTime(&TimpKernelExtern, 
inceput, sfarsit) );     
cutilSafeCall( cudaMemcpy(host_odata, 
device_odata, dimensiune_mem,   
cudaMemcpyDeviceToHost) ); 
    CUTBoolean rezultat = 
cutComparef(trans, host_odata, 
dimensiune_x*dimensiune_y); 
if (rezultat == CUTFalse) { 
      shrLog(" %s eroare Kernel \n", 
DenumireKernel); 
      reusita = CUTFalse; 
} 
 
// masuram inauntrul kernel-ului 
cutilSafeCall( cudaEventRecord(inceput, 
0) ); 
    kernel<<<grid, 
threads>>>(device_odata, device_idata, 
dimensiune_x, dimensiune_y, 
NUMAR_REPETITII); 
    cutilSafeCall( 
cudaEventRecord(sfarsit, 0) ); 
cutilSafeCall( 
cudaEventSynchronize(sfarsit) ); 
    float TimpKernelIntern; 
cutilSafeCall( 
cudaEventElapsedTime(&TimpKernelIntern, 
inceput, sfarsit) );     
cutilSafeCall( cudaMemcpy(host_odata, 
device_odata, dimensiune_mem, 
cudaMemcpyDeviceToHost) ); 
rezultat = cutComparef(trans, 
host_odata, dimensiune_x*dimensiune_y); 
if (rezultat == CUTFalse) { 
      shrLog(" %s eroare Kernel \n", 
DenumireKernel); 
      reusita = CUTFalse; 
} 
     

The timing is achieved through the “for” loop 
and by passing the variable 
“NUMAR_REPETITII” to the kernel: 
 
for (int i=0; i < NUMAR_REPETITII; i++) 
{ 
  kernel<<<grid, 
threads>>>(device_odata, device_idata, 
dimensiune_x, dimensiune_y, 1); 
    } 
……………………… 
 
 kernel<<<grid, threads>>>(device_odata, 
device_idata, dimensiune_x, 
dimensiune_y, NUMAR_REPETITII); 
 

The two timings presented above differ in the 
overhead of the kernel launch and must be 
consistent between different kernels and 
when calculating the matrix’s indices when 
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the kernel launches. 
The looping over kernel acts as a 
synchronization mechanism because when 
the kernel is launched multiple times from a 
loop, all the blocks from inside one kernel 
launch must have executed completely before 
another launch can occur. Once every loop, 
the set of active blocks and memory access 
patterns reset and thus resources synchronize. 
When the loop takes place within the kernels 
it is more likely for the set of active thread 
blocks to diverge during the timing loop. The 
two timing code methods represent a useful 
tool for measuring the overall performance 
and the data movement times between 
kernels.  
We benchmark the copy and transpose 
operations on a GTX480 and a GTX280 in 
order to analyze the optimization methods 

regarding coalesced global memory accesses 
and shared memory bank conflicts.  
The testing methodology follows the 
guidelines from NVIDIA [13] and 
benchmarks the following operations: Simple 
Copy, Shared Memory Copy, Naïve 
Transpose, Coalesced Transpose, Bank 
Conflict Free Transpose, Fine-grained 
Transpose, Coarse-grained Transpose and 
Diagonal. The performance of copy and 
transpose kernels obtained on a 1024x1024 
square matrix (composed from 64x64 tiles, 
each tile having 16x16 size) using a GeForce 
GTX280 and a GeForce GTX480 are 
recorded after 10 consecutive runs for each 
device regarding kernel over and kernel in.  
a)  Simple copy test. Results are presented in 
Table 2 and Figure 3.  

 
Table 2. Bandwidth in the simple copy test. 

 Loop over kernel (GB/s) Loop in kernel (GB/s) 

Test number GTX280 GTX480 GTX280 GTX480 

1 72.1 110.76 105.87 358.43 

2 91.67 114.95 106.08 352.7 

3 91.64 118.69 106.03 358.38 

4 67.85 118.85 105.91 355.49 

5 91.61 106.68 105.86 353.92 

6 72.21 118.73 106.07 356.63 

7 72.11 118.76 106.32 356.27 

8 70.84 107.77 105.95 348.68 

9 91.66 118.71 105.86 352.44 

10 72.06 118.65 105.89 348.93 

 
Comparing the obtained results in this case, 
one can observe that in both situations (loop 
over kernel and loop in kernel) the bandwidth 
throughput is higher when using the 
GTX480. Differences are notable in the loop 
in kernel test, the bandwidth being up to 3 
times higher for GTX480 than for GTX280. 

In the loop over kernel test differences 
between the two graphic cards are on average 
45% higher for the GTX480 than for the 
GTX280. These differences are justifiable if 
we take into account the improvements of 
Fermi architecture.  
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Fig. 3. Simple copy test – graphical results. 
 
b) The naïve transpose test. Results are presented in Table 3 and Fig. 4. 
 

Table 3. Bandwidth in the naïve transpose test. 

 
Loop over kernel 

(GB/s) 
Loop in kernel (GB/s) 

Test number GTX280 GTX480 GTX280 GTX480 

1 2.42 60.6 2.48 92.09 

2 2.43 60.72 2.48 92.55 

3 2.43 57.9 2.48 92.54 

4 2.42 55.38 2.48 92.45 

5 2.42 55.41 2.46 92.37 

6 2.42 60.65 2.48 92.44 

7 2.43 60.6 2.47 92.42 

8 2.42 57.06 2.47 92.42 

9 2.43 57.02 2.48 92.13 

10 2.42 60.55 2.48 92.47 

 

Fig. 4. Naïve transpose test – graphical results. 
 
Comparing the obtained results in the naïve 
transpose case, one can observe that in both 
situations (loop over kernel and loop in 
kernel) the bandwidth throughput is 
tremendously higher when using the 
GTX480. The GTX480 has a L1 cache that 
helps caching temporary register spills of 
complex programs. The GPUs generations 
prior to Fermi used registers directly to 
DRAM and this increased latency. The L1 
cache scales the performance tremendously. 

The GTX480 also features a 768 KB unified 
L2 cache that provides efficient high speed 
data sharing across the GPU. Algorithms 
such as sparse matrix multiplication, physics 
solvers and raytracing benefit greatly from 
the cache hierarchy. Differences of 
performance between the simple copy and 
the naïve transpose tests can be alleviated 
through the global memory coalescing 
optimization technique.  
c) Coalesced Transpose. Results are 
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presented in Table 4 and Figure 5. 
GTX480 offers a significant increased 
performance in the coalesced transpose test, 
in both situations (loop over kernel and loop 
in kernel) over the GTX280. In both 
mentioned above situations the bandwidth 

throughput is higher in the coalesced 
transpose test than in the case of the naïve 
transpose test, but these results are much 
lower than those obtained in the simple copy 
test. 

 
Table 4. Bandwidth in the coalesced transpose test. 
 Loop over kernel (GB/s) Loop in kernel (GB/s) 

Test number GTX280 GTX480 GTX280 GTX480 

1 17.7 91.96 19.37 167.74 

2 18.29 91.7 19.41 167.69 

3 18.31 81.53 19.35 167.49 

4 17.81 91.76 19.35 167.4 

5 17.29 91.68 19.36 167.31 

6 17.56 91.86 19.33 167.89 

7 18.05 91.85 19.33 167.81 

8 17.8 91.86 19.37 167.86 

9 17.28 91.9 19.4 167.81 

10 18.02 91.69 19.36 167.27 

 

Fig. 5. Coalesced transpose test – graphical results. 
 
A synchronization barrier required in the 
coalesced transpose explains this 
performance gap.    
d)  Shared memory copy. Results are 
presented in Table 5 and Figure 6. 
When comparing results obtained in this test 
by the GTX280 and the GTX480 one can 
notice that the second device offers better 
performance. In this test the copy kernel 

utilizes shared memory. Threads do not share 
data during the execution phase and the 
purpose of this test is to assess the cost of the 
synchronization barrier (mentioned in the 
coalesced transpose case). The use of shared 
memory with a synchronization barrier has 
little effect on the performance as suggested 
by the results obtained. 
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Table 5. Bandwidth in the shared memory copy test. 
 Loop over kernel (GB/s) Loop in kernel (GB/s) 

Test number GTX280 GTX480 GTX280 GTX480 

1 38.65 96.71 87.8 192.82 

2 39.99 96.85 87.78 193.25 

3 39.98 96.67 87.69 193.27 

4 36.75 96.69 87.82 193.17 

5 34.32 96.77 87.79 193.29 

6 36.66 96.82 87.96 192.98 

7 38.03 96.69 87.94 192.81 

8 37.09 86.8 88.03 193.07 

9 36.56 81.36 88 193.65 

10 38.31 96.64 88.09 192.76 

 

Fig. 6. Shared memory copy test – graphical results. 
 
When comparing the simple copy and shared 
memory copy for the GTX280 the “Loop in 
kernel” column indicates closed values for 

the measured bandwidth. 
e)  Shared memory bank conflicts. Results 
are presented in Table 6 and Figure 7. 

 
Table 6. Bandwidth in the shared memory bank conflicts test. 

 Loop over kernel (GB/s) Loop in kernel (GB/s) 

Test number GTX280 GTX480 GTX280 GTX480 

1 18.38 102.57 19.39 241.21 

2 18.6 102.5 19.38 240.16 

3 18.61 102.56 19.37 240.13 

4 18.33 102.62 19.41 241.29 

5 18.07 95.21 19.36 237.26 

6 18.32 102.53 19.35 240.16 

7 18.37 90.96 19.37 239.69 

8 18.38 102.42 19.37 241.54 

9 18.36 102.4 19.41 239.51 

10 18.36 102.4 19.31 241.61 

 
The results recorded on the Fermi 
architecture, the GTX480, are many times 
higher than the results recorded on the 
previous architecture, the GT200. The 
significant difference between the 

performances of these two architectures is 
explainable if we analyze the way shared 
memory bank conflicts occur and how the 
Fermi architecture manages the parallel 
threads.  
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Fig. 7. Shared memory bank conflicts test – graphical results. 
 
CUDA shared memory is divided into more 
memory banks (equally sized memory 
modules). Consecutive array accesses 
through consecutive threads are very fast as 
each memory bank holds a successive 32-bit 
value (e.g. a float variable). Multiple data 
requests from the same bank generate bank 
conflicts. The requests can originate from the 
same address or multiple addresses may map 
to the same bank. The hardware serializes the 
memory operations when the conflict occurs 
and this force all the threads to wait until all 
memory requests are fulfilled.  Serialization 
is avoided if all threads read from the same-
shared memory address, because a broadcast 
mechanism is automatically triggered. The 
broadcast mechanism is an excellent high-
performance method to deliver data 
simultaneously to many threads. 
When improving the performance of a 
CUDA application a developer must 
differentiate between local multiprocessor 
memory types’ characteristics. The 
“registers” are the fastest memory on the 
multi-processor. Registers are accessible by 
the thread and exist only during its execution. 
Shared memory is as fast as a register if no 
bank conflicts occur or when the same 
memory address is accessed. Unlike 
registers, shared memory is accessible by any 
thread within the block where it has been 
created and exists as long as the block exists. 
Global memory exists during the application, 
is accessible from the device and is 
approximately 150x slower than register or 

shared memory. Local memory resides in 
global memory, is accessible only by the 
thread and exists only during the lifetime of a 
thread. 
When profiling CUDA applications a 
programmer can determine if shared memory 
bank conflict occurs in any of the kernels by 
using the warp serialize flag. In the Fermi 
architecture the streaming multiprocessor 
schedules threads in groups of 32 parallel 
threads called warps. Two warp schedulers 
and two instruction dispatch units make it 
possible for two warps to be created and 
executed in the same time. The dual warp 
scheduler takes two warps and dispatches 
one instruction from each of them to a group 
consisting of 16 cores, 16 load/store units or 
4 Special Function Units. The Fermi’s 
scheduler does not have to check for 
dependencies inside the instruction stream as 
warps execute independently from one 
another. Most of the instructions can be dual 
issued (two floating instructions, two integer 
instructions or a mix of integer, floating point 
etc) [7]. 
f)  Decomposing Transpose. In the next 
section, we break the transpose into 
components to determine the cause for the 
significant difference of performance 
between the coalesced and shared memory 
bank conflict free transpose and the shared 
memory copy. Results are presented in Table 
7 and Figure 8 for the fine-grained transpose 
test and Table 8 and Figure 9 for the coarse-
grained transpose test.  
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Table 7. Bandwidth in the fine-grained transpose test. 

 Loop over kernel (GB/s) Loop in kernel (GB/s) 
Test 

number 
GTX280 GTX480 GTX280 GTX480 

1 60.32 105.11 92.11 242 

2 63.64 92.4 91.13 241.47 

3 70.28 104.76 90.56 239.8 

4 60.33 104.97 89.61 239.86 

5 60.24 105.03 90.64 240.46 

6 60.35 105.04 91.44 239.47 

7 70.23 104.77 91.6 240.82 

8 60.33 104.71 91 238.18 

9 60.37 104.7 92.07 240.63 

10 60.36 105.01 91.24 239.66 

 

Fig. 8. Fine-grained transpose test – graphical results. 
 

Table 8. Bandwidth in the coarse-grained transpose test. 
 Loop over kernel (GB/s) Loop in kernel (GB/s) 

Test 
number 

GTX280 GTX480 GTX280 GTX480 

1 18.41 103.97 19.42 239.6 

2 19.26 103.99 19.33 239.26 

3 18.63 104.12 19.36 237.46 

4 18.36 103.97 19.37 241.39 

5 18.37 104 19.41 240.98 

6 18.41 104.03 19.37 241.39 

7 18.41 96.07 19.36 238.98 

8 18.42 90.87 19.35 231.84 

9 18.4 100.92 19.38 230.45 

10 18.41 100.5 19.34 240.19 
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Fig. 9. Coarse-grained transpose test – graphical results. 
 

The coarse-grained transpose kernel does not 
transpose the data within the tile, it only 
writes the tile to the transposed location 
while the fine-grained transpose kernel does. 
The coarse-grained transpose has almost the 
performance of the coalesced and bank 
conflict free transposes, while the fine-
grained transpose has a performance similar 
to the shared memory copy. A performance 
bottleneck occurs when writing data in global 

memory to the transposed location. A 
decrease in performance can occur when 
accessing global memory through partition 
camping just like in the case of shared 
memory where performance degrades 
through bank conflicts. For a general 
understanding of the partition camping issue, 
see [14]. 
g) Diagonal block reordering. Results are 
presented in Table 9 and Figure 10. 

 
Table 9. Bandwidth in the diagonal block reordering test. 

 Loop over kernel (GB/s) Loop in kernel (GB/s) 

Test number GTX280 GTX480 GTX280 GTX480 

1 26.37 78.7 101.56 256.11 

2 28.1 78.7 101.21 256.21 

3 26.88 78.6 101.64 255.54 

4 26.26 78.66 101.51 255.89 

5 26.32 78.73 101.42 256.98 

6 25.83 78.78 101.34 255.33 

7 26.35 71.69 101.45 256.03 

8 26.38 71.76 101.31 254.85 

9 26.38 78.72 101.44 256.83 

10 26.38 71.51 101.44 254.45 

 

Fig. 10. Diagonal block reordering test – graphical results. 
 
Diagonal reordering can solve the partition 
camping problem mentioned before. In the 
diagonal case, when reading from the input 

matrix and writing to the transposed one, 
pairs of tiles cycle through the partitions 
[13]. The read and write operations, when 
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looping in the kernel, represent only a few 
percent of the shared memory copy. The 
performance degrades slightly if looping 
takes place over the kernel. The diagonal 
transpose is more efficient than the other 

transpose types analyzed in this paper when 
it comes about bandwidth throughput. The 
performance increase happens despite the 
performance degradation mentioned above.  

 
Table 10. Average bandwidth recorded in all the tests. 

Test number Test name 
Loop over kernel (GB/s) Loop in kernel (GB/s) 

GTX280 GTX480 GTX280 GTX480 

1 Simple copy 79.375 115.255 105.984 354.187 

2 Naïve transpose 2.424 58.589 2.476 92.388 

3 Coalesced transpose 17.811 90.779 19.363 167.627 

4 Shared memory copy 37.634 94.2 87.89 193.107 

5 
Shared memory bank 

conflicts 
18.378 100.617 19.372 240.256 

6 Fine-grained transpose 62.645 103.65 91.14 240.235 

7 Coarse-grained transpose 18.508 101.244 19.369 238.154 

8 Diagonal transpose 26.525 76.585 101.432 255.822 

 

 

 
Fig. 11. Average bandwidth recorded in all the tests – graphical results. 
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The performance improvement is more 
notable for the GT200 architecture. 
Finally, we present below a synthetic 
analysis, in order to give an overview of the 
experimental results obtained when testing 
the performance of NVIDIA’s latest two 
architectures: GT200 and Fermi. Average 
bandwidth recorded in all the tests are 
presented in Table 10 and Figure 11, on both 
architectures, using the Loop over kernel and 
Loop in kernel methods. 
 
6 Conclusions and Future Work 
In this paper, we have analyzed several 
aspects regarding the improvement of 
performance for applications written in 
CUDA. We addressed an issue of paramount 
importance when programming an 
application in CUDA: GPU memory 
management through transpose kernels that 
are progressively optimized. We have also 
benchmarked and evaluated the performance 
for progressively optimizing a transposing 
matrix application in CUDA.  
One particular interest was to research how 
well the optimization techniques, applied to 
software application written in CUDA, scale 
to the latest generation of general-purpose 
graphic processors units (GPGPU), like the 
Fermi architecture implemented in the 
GTX480 and the previous architecture 
implemented in GTX280.  
Lately, there has been a lot of interest in the 
literature for this type of optimization 
analysis, but none of the works so far (to our 
best knowledge) tried to validate if the 
optimizations can apply to a GPU from the 
latest Fermi architecture and how well does 
the Fermi architecture scale to these software 
performance improving techniques. In this 
context, we performed the following tests on 
both architectures: simple copy, naïve 
transpose, coalesced transpose, shared 
memory copy, shared memory bank 
conflicts, fine-grained transpose, coarse-
grained transpose and diagonal transpose. 
Future work involves a more thorough 
optimization using a larger selection of 
CUDA applications and an exhaustive 

benchmarking process. We intend to analyze 
how the new CUDA architecture can 
optimize the data extraction process. 
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